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ABSTRACT 

The dynamic behavior of a single-DOF equipment mounted on a sliding primary structure is studied 
numerically. The equipment and the primary structure are treated as a combined sliding structural system 
subjected to harmonic ground motions. To deal with the discontinuity nature of sliding structural 
systems, in this work, a fictitious spring model is adopted. Based on the model, the problem is 
formulated in a state space form, and an incremental numerical scheme is proposed for computing the 
time history. Two numerical examples considering an equipment mounted on a single- and a multiple-
DOF primary structures are given to study three effects, namely, the variation of the frictional coefficient 
of the sliding support, sub-harmonic effect on the mounted equipment, and tuning effect (i.e., when the 
frequency of the equipment is coincident with or close to that of primary structure). The dynamic 
characteristics of the mounted equipment are highlighted in the analysis of the two examples. 

INTRODUCTION 

Sliding structures are one kind of base-isolated structure systems. By implementing a sliding 
support under the base raft, a sliding structure can reduce the transmission of seismic excitation to its 
superstructure. Westermo and Udwadia'83 are among the first researchers to study a sliding system with 
an oscillating single DOF superstructure placed on a sliding foundation, and they have derived an 
analytical solution for the oscillator subjected to a harmonic ground motion. In their work, they have 
pointed out that the sliding system will possess a very special feature, called the sub-harmonic resonance, 
as can be identified by the fact that there are several resonant peaks in addition to the main peak 
associated with the main resonant frequency in the frequency response curve. Mostaghel and 
Tanbakuchi'83 and Mostaghel et al.'83 also studied a similar sliding system, using a semi-analytical 
solution procedure to compute the response caused by harmonic and earthquake ground excitations. 
Qamaruddin et al.'86 proved experimentally the effectiveness of using sliding supports for seismic 
protection of masonry buildings. In order to study multiple DOF sliding structure systems, Yang et 
al. '90 introduced a fictitious spring to represent the friction effect of the sliding device, and their result 
shows that the sliding device is effective in reducing the response of MDOF structures as well. It is well 
known that the motion of a sliding structure may have two different phases, namely, the sliding and non-
sliding phases. While in each phase the sliding structure can be modeled as a linear system, the two 
phases have different governing equations. It is obvious that the overall behavior of the sliding structure 
is nonlinear. Due to this nonlineality, the sub-harmonic resonance is present in the frequency response 
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of the sliding structure, thereby making the sliding structure become a very complicated structural 
system. While the effectiveness of sliding devices in seismic isolation has been studied by the previous 
authors, this work aims to investigate the dynamic behavior of an equipment item mounted on a sliding 
primary structure. 

MATHEMATICAL MODEL AND FORMULATION 

A sliding primary structure with an attached equipment can be considered as a combined structural 
system. In this work, the primary structure is assumed to be an n-story shear-type building structure and 
an equipment as a single-DOF system is attached to one of the floor slabs. Such a system may be 
represented by Figure 1. Other assumptions made in this study include (1) frictional mechanism is of the 
Coulomb type. (2) the frictional coefficient between the sliding surfaces remains constant throughout the 
motion of the structure. (3) only horizontal ground motions are considered. 

In Figure 1, the combined structure has n+2 degrees of freedom. As mentioned earlier, a sliding 
structure may exhibit the sliding and non-sliding phases. In the non-sliding phase, there is no relative 
motion between base raft and the ground. This implies that the motion of base raft is identical to the 
ground motion. Therefore, the DOF associated with the base raft may be removed, leaving n+1 DOFs to 
the structural system. On the other hand, the total number of DOFs needed to describe the response of 
structural system in sliding phase remains as n+2. In numerical analysis, this disagreement on the 
number of DOFs due to the transition of the sliding structure from one phase to the other may cause 
certain inconveniences. To this end, this work adopts the fictitious spring model proposed by Yang et 
a/.'90, and derives formulas for systematic analysis of the combined structural system. As was 
suggested by Yang et a/.'90, the spring constant kf  of the fictitious spring is taken as zero for the sliding 

phase and as a very large value for the non-sliding phase. With this model, the DOF associated with the 
base raft is preserved throughout the entire analysis process. In the non-sliding phase, the internal force 
of the fictitious spring will automatically account for the actual static frictional force which is required to 
balance the inertial force exerted by the superstructure. 

When the structure depicted in Figure 1 is subjected to a ground motion, its dynamic equation can 
be expressed as 

11/141-C4+K4=—Mlio +f (1) 

where the (n+2)xl column matrix 4 .{41,42, ,4,,,41,,4,}7.  contains the relative displacements of the 

story slabs as well as the relative displacement of the equipment to the ground, and the (n+2)x(n+2) 
matrices M, C, and K are, respectively, the mass, damping and stiffness matrices for the combined 
structural system, taking into account the properties of the mounted equipment as well as the fictitous 
spring constant kf  In Equation (1), there are two force terms on the right hand side. The first term M 

represents the inertial force acting on each DOF due to the ground acceleration Yo  while the second 

term f is to account for the dynamic frictional force. The (n+2)xl column matrices I and f may be 
expressed as 

1= {1,1,—,1}T (2) 

f = {0,0,• • • ,0,—sgn( b )Fd }T (3) 

where the superscript "r' denotes matrix transportation, the symbol sgn(• ) means the sign of (• ), and 
Ed  denotes the dynamic frictional force under the base raft, which is equal to the maximum static 
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frictional force, denoted by F . The term f must be added in Equation (1), since in the sliding phase 
the spring constant kf  is taken as zero, in which case the fictitious spring provides no spring force for 
accounting for the constant dynamic frictional force. 

Equation (1) can be further rewritten in a state space form, i.e. 
i=Ax+u+p (4) 

where x = }rand A is a 2(n+2)x2(n+2) system matrix 

A= 
riVr IC _M-111 

I 0
(5) 

The two force terms in equation (4), namely, u and p can be explicitly written as 

u+p= 
{

-1101 {M-1  f} 

0 j 0 
Equation (4) can be used to describe the response of the sliding structure, either in the non-sliding 

or sliding phase, provided that the following two constraints are imposed: 
p = 0, for non-sliding phase (6.a) 

A(k f ) = A(0), for sliding phase (6.b) 

Note that in Equation (6.b), the system matrix A is written as a function of kf  to signify the fact that all 
the elements except kf  in A remain unchanged throughout the entire motion of the structure. 

NUMERICAL SCHEME 

1. Discritized General Solution 

Equation (4) is the equation for a linear time-invariant system. However, with the constraints (6.a) 
and (6.b) imposed, it actually represents two sets of equations for the two different phases of motion. 
Equations (4) and (6.a) together describe the structure in the non-sliding phase, while Equations (4) and 
(6.b) the sliding phasP. As the sliding system may switch between these two phases at certain instants 
(to be discussed later), the entire behavior of a sliding system becomes highly non-linear. Nevertheless, 
within each phase of motion, the system represented by either Equations (4) and (6.a) or (4) and (6.b) is 
a linear one. It follows that time response solution can be denoted by 

x(t) e. A(t-ti ) 1(1.
1
)1_ eA(t-t) [u(t) p]dt t < t t f (7) 

where et', called the transition matrix, is a matrix exponential function of A and t, and t, tf  and x(ti) are, 
respectively, the starting time, ending time and initial conditions for the current phase. Note that the 
force vector p is not a function of time. Once the sliding system completes this phase, it will switch to 
the other phase and, then, tf  and x(tf) become ti and x(ti) of the next phase. Equation (7) can be further 
rewritten in a incremental form, i.e., 
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At 

xk+i = eAA'xi, + ( 
o 

emdr )( uk +P) (8) 

where At is the size of the chosen time step, and xk  and uk  denote the values of x(t) and u(t) at kth time 
step. Equation (8) states that the solution for the current step xk,./  can be computed from the solution of 
the last step xk, provided that the force term (uk+p) remains constant in each time interval At 

2. Condition for Transition from Non-sliding Phase to Sliding Phase 

When the static frictional force reaches its maximum value F., the system will start to slide. In 
the fictitious spring model, the static frictional force, denoted by Fs, is provided by the spring force of 
the fictitious spring. Therefore, the condition for the sliding system to transfer from non-sliding phase to 
sliding phase can be expressed as 

Fs  = k f  •s(to )= Fm. (9) 
where to  is the moment when the structure starts to slide, and s(t) is the elongation of the fictitious spring 
which is related to the relative displacement of base raft, denoted by 4b, by an added constant. The exact 
value of transition time to  may not be immediately obtained in the solution process. It is likely to 
happen that the spring force is less than F. at the current time step, say tk, while exceeding Finax   at 
the next time step tk,i. When this occurs, to  is confined within the time interval ( tk, tk+1). In this case, 
one may employ numerical methods, such as bisection method or Newton's method, etc., to solve 
Equation (9) for the exact transition time to  to a desired accuracy. 

3. Conditions for Transition from Sliding Phase to Non-sliding Phase 

After the structure enters the sliding phase, it may return to the non-sliding phase whenever the 
following two conditions are satisfied: 

b(1.0)= 0

KK
(10) 

FS = mbio(to)— k,,[4„(t0 )— b(to)l—Cnn(to). F,„. 
where Fs' is an equivalent static frictional force required to balance the motion of the superstructure 
computed in the sliding phase, which can be obtained from the free body diagram of the base raft (see 
Figure 2), based on the fact that the base raft and the ground have the same acceleration and velocity (i.e., 

= 0). At the moment when the system enters the non-sliding phase, Fs' becomes the actual Fs  
and will be used as the initial frictional force. Using this initial value, the corresponding initial 
elongation 6(t1) of the fictitous spring and the initial relative displacement b(ti) of the base raft can be 
computed, and applied to the non-sliding phase that follows. 

NUMERICAL RESULTS AND DISCUSSION 

In order to study the equipment response, the aforementioned numerical method has been applied to 
the study of two examples. In the first case, the primary structure considered is a single story building, 
while in the second case, the primary structure is a 4-story building. For both cases a single-DOF 
equipment is mounted on the top of the building roof and harmonic ground acceleration yo  = 0.5g sing-It 
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is imposed. The study will be focused on three aspects, namely, the variation of frictional coefficients, 
sub-harmonic resonance effect and tuning effect. 

Case 1. Equipment on a Single-DOF Structure 

Some parameters for the structural properties are: mass of base raft mb  = 61b; mass of structure ms  

= 2 lb; structural stiffness ks  = 78.96 lbf/in; mass ratio of equipment to structure me  / m5  = 1/100; 

fictitious spring constant k f  = 10000 ks; structural damping cs  = 1.26 lb • sec / in (equal to a damping ratio 

= 5%); equipment damping ratio C,e  = 5 %. Resulting from the above chosen parameters, the 

undamped natural frequency of the primary structure is cos  = 1.0 Hz for the non-sliding phase, and is co: 

= 1.15 Hz for the sliding phase (hereafter, a star sign "*" on an entity signifies that the entity is 
associated with the sliding phase). 

In order to study the effect of variation of frictional coefficients, Figure 3 is plotted with four 
different frictional coefficients, namely, 11 = 0.4, 0.25, 0.1 and 0.05, assuming the equipment frequency 
to be we  = 5 Hz. Four observations can be made from this figure: (1) The use of a smaller frictional 

coefficient generally will reduce the acceleration response of the equipment from the fixed base case. (2) 
Besides the main resonant response, there are extra peaks appearing in the range of lower excitation 
frequencies. These are nothing but the response of sub-harmonic resonance. With a large frictional 
coefficient, e.g., µ = 0.25 or 0.4, the sub-harmonic resonant response may exceed the response of a fixed 
base case. (3) The main resonant frequency associated with the natural frequency of the primary 
structure drifts from cos  toward o;, as the values of p changes from oo(for fixed base case) toward 0.05, 

while the sub-harmonic resonant frequencies do not vary with 
From Figure 3, one may also note that sub-harmonic resonance only occurs at frequencies lower 

than the equipment's natural frequency. This can be more clearly observed in Figure 4, in which both 
structure and equipment responses are depicted for the case ofµ = 0.1 and we  = 0.5 Hz. In the figure, it 

is observed that the equipment exhibits a very different sub-harmonic behavior from that of the primary 
structure. 

With regard to the tuning effect, i.e., when the frequencies of the equipment and structure are very 
close, a case with coe= 1.1 Hz is considered and the result is depicted in Figure 5. The frequency we=1.1 

Hz is chosen so that we  falls between ws  and co: (the natural frequencies of the non-sliding phase and 

sliding phase). Comparing Figure 5 (tuning case) with Figure 3 (non-tuning case), one may conclude that 
when we  is close to the structure's natural frequencies, the equipment responses at main resonance 

frequency (around 1.1 Hz) and also at sub-harmonic resonance frequencies are significantly amplified. 
Figure 6 illustrates how the equipment response varies with we, when the ground frequency Q is fixed at 

0.5 Hz. It is observed that the effect of sub-harmonic resonance causes the response to be amplified 
when we  is tuned to around 1.3 Hz which results in a ratio of f2/0), around 0.38 (a similar ratio of Dicoe  
for the first sub-harmonic frequency in Figure 5). In order to study how the sub-harmonic resonance of 
the primary structure affects the equipment when the equipment is tuned through the primary structure's 
sub-harmonic resonant frequencies, it is assumed that both f2 and we  are equal and varied simultaneously, 
as in Figure 7. It can be observed that although the response of the primary structure exhibits several 
sub-harmonic peaks below 1 Hz, the equipment response will not be amplified when the equipment is 
tuned to these sub-harmonic resonant frequencies. However, it will be amplified when tuned to the 
structure's main resonant frequency, which falls between cos  (1 Hz) and co: (1.15 Hz). 
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Case 2. Equipment on a 4-Story Structure 

The response of an equipment mounted on a 4-story sliding structure is also investigated in this 
study. The structural properties are assumed as: mass of base raft mb  = 6 Ib; mass of each story m1  = m2  
= m3  = m4  = 21b; stiffness of each story kl = k2  = 1r3  = k4  = 78.96 lbf/in; damping of each story c1 = c2  = 
c3  = c4  = 1.26 lb • sec / in; mass ratio of equipment to structure me  / m1  = 1/100; fictitious spring stiffness 
kf  = 10000 k1; equipment damping ratio C,e  = 5 %. The undamped natural frequencies of the primary 
structure, resulting from the above structural properties, have been listed in Table 1. 

The effect of variation of the frictional coefficient on the equipment response is illustrated in Figure 
8, in which la = 0.25, 0.1 and 0.05 are considered. In general, the less value of 11, the smaller the 
response is. Also, the first main resonance frequency drifts from co (0.35 Hz) toward (1)1*(0.49 Hz), 
when µ decreases. In Figure 9, the equipment responses for the cases of we  = 1 Hz and 2.5 Hz are 
compared. Also shown in the figure is the response of the 4th-story roof, where the equipment is 
mounted. The case of we  = 1 Hz represents a tuned case (tuned to co2). Three observations can be made 
from the figure: (1) The tuned case has more sub-harmonic frequencies than the primary structure has. (2) 
Responses at both main and sub-harmonic resonant frequencies, are magnified in the tuned case. (3) For 
an equipment with higher natural frequency, i.e., relatively stiff, such as the case of we  = 2.5 Hz, it 
behaves like a rigid system. In this case, the equipment response curve is very similar to the response of 
the structure to which it is mounted. In order to investigate the tuning effect when the equipment 
frequency coincides with the sub-harmonic resonance frequencies of the primary structure, it is assumed 
that both SI and we  are equal and varied simultaneously, as in Figure 10. It can be seen that although the 
response of the primary structure exhibits several sub-harmonic resonant peaks below 0.49 Hz, the 
response of the equipment is not amplified at these resonant frequencies. Nevertheless, the amplification 
of the response will occur when we  is tuned to the structure's main resonant frequencies. These main 
resonant frequencies are somewhere in between col  and co i*, where i = 1, 2, and 3. 

CONCLUSIONS 

In order to study the dynamic behavior of single DOF equipments mounted on sliding primary 
structures subjected to harmonic ground motions, two numerical examples have been prepared. From 
the examples, the major observations are: (1) In general, the use of a sliding foundation is effective in 
reducing the equipment responses. However, due to the presence of sub-harmonic resonance, the 
equipment responses at the sub-harmonic resonant frequencies are higher than those of the fixed-base 
case if a larger frictional coefficient is adopted. (2) The sub-harmonic resonance will occur only when 
the excitation frequencies are lower than the equipment frequency. (3) When the equipment is tuned to 
the main resonant frequencies of the primary structure, the equipment response, compared with the un-
tuned case, will be magnified at both main and sub-harmonic resonant frequencies. (4) The resonant 
frequencies vary with the selection of frictional coefficients. 
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Figure 3 Effect of Frictional Coefficient p. (co. = 5 Hz) 
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Table 1 Undamped Natural Frequencies of the 4-Story Primary Structure 

Non-Sliding Phase (Hz) 

0, 0,2 

Sliding Phase (Hz) 

1---- (133 (134 C°1 C°2 (133 0)4*  

0.35 1.00 1.53 1.88 0.49 1.06 1.55 1.88 
+ does not include the fictitious spring mode (abou 57 Hz). 

does not include the rigid body mode (0 Hz). 

Figure 2 Free Body Diagram of Base Raft 
Figure 4 Comparison of Structure and Equipment 

Frequence Responses (c). = 0.5 Hz; IA = 0.1) 

243 



10 0.10 1.00 01 1 

SI (Hz) 

Figure 5 Frequency Response of Equipment When 
Tuned to the Structure Frequency (we  = 1.1 Hz) 

01 1 10 

= me  (Hz) 

10 01 

Figure 9 Comparison of Equipment Responses for 
Different Equipment Frequencies (µ = 0.1) 
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Figure 8 Effect of Frictional Coefficient on 
Equipment Response (we  = 1 Hz) 
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